Announcing our second STERN participation

Hybrid Engine Development is proud to announce its second participation in the STERN* (STudentische Experimental RaketeN) program of the German Aerospace Center DLR! During the first participation, HyEnD was able to set a new World Record for student-built Hybrid Rockets and we are looking forward to new possibilities in the next three years.
HyEnD will design, build and launch a new Hybrid Rocket in the 10kN thrust range during the program. We are currently in the preliminary design phase and so there is still the chance that some of the key parameters will change, but we will share with you more information once we are ready to do so.

It is also planned to build a smaller demonstrator rocket to test some of the technologies necessary. This demonstrator will be based on our previous project EXPLORE, although the oxidizer will be changed from liquid oxygen to nitrous oxide. In addition, tests during the last few months have shown the potential benefits of a completely new kind of polymeric fuel which will be further investigated and likely be used in both rockets.

We would like to thank the Deutsches Zentrum für Luft- und Raumfahrt (DLR) and the Institute of Space Propulsion of the University of Stuttgart for their support.

*The STERN Program is supported by the German Federal Ministry for Economic Affairs and Energy (BMWI)

EXPLORE – HyEnD’s First LOx Hybrid Rocket

HyEnD is proud to announce that the development of its first ever liquid oxygen hybrid rocket EXPLORE (Experimental Paraffin Liquid Oxygen Rocket) is in full gear. EXPLORE is intended to be a stepping stone for a bigger project, using a variety of new subsystems to prove their sustainability.

The rocket will be able to reach a maximum altitude of 4500m while continuously transmitting telemetry data. Data will be recorded using a TeleMega and an Arduino. We will manufacture the structure out of carbon fibre composites, in order to not surpass the targeted launch weight of 19kg. EXPLORE’s dual parachute recovery system will be radially ejected, as this has been proven feasable with the successful recovery of our CanSat Launcher. Besides our usual paraffin mixture, we will utilize liquid oxygen as oxidizer. As liquid oxygen doesn’t possess the same self-pressurisation capabilities as nitrous oxide, which has been used as oxidizer in the past, an external pressurisation system for it’s tank is being developed. Passive stabilisation is achieved using four fins attached to the rear end of the rocket.

The preliminary definition phase of the project has been completed and detailed designs for the different subsystems are currently being developed.

More updates will follow soon!

CanSat Launcher (CSL) Announcement

HyEnD is teaming up with student group KSat Stuttgart e.V. for a cooperative project. „CanSat launcher“ is a small platform developed to carry K-Sat’s CanSat satellite to an altitude of up to 500m. Equipped with a drogue and a main parachute, the solid motor based rocket can be recovered and reused. It is made out of CFRP, with a GRP nose and aluminum for structural elements. We will use a TeleMega to deploy the CanSat and the parachutes with pyro charges and an Arduino for flight data acquisition. As of now, we are finalizing the design and will soon start the production of the rocket parts and testing of all subsystems. While this project does not have the scope of HEROS, it is used as introduction and practice for our many new member.